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In the recent past, recurrence quantification analysis (RQA) has gained an increasing interest in various
research areas. The complexity measures the RQA provides have been useful in describing and analysing a
broad range of data. It is known to be rather robust to noise and nonstationarities. Yet, one key question
in empirical research concerns the confidence bounds of measured data. In the present Letter we suggest
a method for estimating the confidence bounds of recurrence-based complexity measures. We study the
applicability of the suggested method with model and real-life data.

 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recurrence Plots (RP) and their quantification (recurrence quan-
tification analysis, RQA) [11] have become rather popular in vari-
ous fields of science. The complexity measures based on RPs have
helped to gain a deeper insight into diverse kinds of phenomena
and experimental data. In this Letter we propose a straightfor-
ward extension to the existing RQA framework which allows us
to not only compute these complexity measures, but also to esti-
mate their confidence bounds. We do this by using a well-known
resampling paradigm – the bootstrap. We show that the confi-
dence bounds of RQA measures come with the regular analysis at
virtually no extra costs and that the method can be useful for com-
paring univariate time series in a statistically sound fashion.

2. Recurrence Plots and their quantification

Recurrence is a fundamental property of dynamical systems. On
this basis the data analysis tool called Recurrence Plot (RP) has
been devised by Eckmann et al. [1] which visualises recurrences in
the phase space of an n-dimensional state vector "xi (i = 1, . . . ,N),

Ri, j = Θ
(
ε − ‖"xi − "x j‖

)
, (1)

where Θ is the Heaviside function, ‖ · ‖ is a norm and ε is the
recurrence threshold. The threshold ε can be defined as an abso-
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Fig. 1. Sample RPs for different dynamical systems. (a) Gaussian white noise, (b) the
Lorenz attractor with ρ = 28, β = 8/3, σ = 10 and (c) a sine wave. Parameters were
m = 3, τ = 3, ε adjusted to RR = 0.1.

lute value or in dependence on other criteria. For the examples
in Fig. 1 we chose ε so that the overall RR, Eq. (2), is 10%. The
binary N × N matrix allows for a 2-dimensional visualisation of
an n-dimensional attractor’s recurrence properties (Fig. 1). From
this matrix a number of well-defined complexity measures can be
extracted (see [11] and references therein). If only univariate time-
series are available the state vectors can be reconstructed using
delay embedding with a given embedding dimension m and a de-
lay τ [14,19].

2.1. RQA measures

The information contained in an RP can be quantified by mea-
sures of complexity based on recurrence point density, diagonal
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and vertical line structures. The simplest measure is the recurrence
rate RR,

RR = 1
N2

∑

i, j

Ri, j, (2)

which denotes the overall probability that a certain state recurs.
A measure based on the distribution of diagonal structures P (l) is
the determinism DET

DET =
∑lmax

l!lmin
lP (l)

∑lmax
l=1 lP (l)

, (3)

the ratio of recurrence points in diagonal lines (of at least length
lmin) to all recurrence points. DET reflects how predictable a sys-
tem is. The measures Lmax and 〈L〉 are the maximum and average
lengths of the diagonal lines in P (l).

Further complexity measures quantify the vertical structures in
an RP. The ratio of points forming vertical line structures of a min-
imal length vmin to all recurrence points is called laminarity

LAM =
∑vmax

v!vmin
v P (v)

∑vmax
v=1 v P (v)

, (4)

a measure sensitive to laminar states and regimes of intermittency.
From the distribution of the vertical line structures P (v) we can
again compute the maximal vertical line length Vmax and the av-
erage called trapping time TT .

These measures can be computed from the whole RP or in mov-
ing, possibly overlapping, windows of size w shifted along the
main diagonal of the RP by an increment of s. This approach is
useful to reveal qualitative transitions in a system.

The RQA measures provide a qualitative description of a system
in terms of complexity measures. It allows to detect transitions in
the system’s dynamics, e.g. transitions from period to chaos, from
strange nonchaotic attractors (SNA) to chaos or even transitions
from chaos to chaos [9,13].

In the next section we will focus on how to derive a quantita-
tive judgement from these measures.

3. Confidence bounds of RQA measures

The RQA measures have been quite useful for the analysis of a
variety of data. Yet, in order to not only detect qualitative changes
in a system’s dynamics but to be able to judge their significance
or to compare two univariate time series, it is necessary to de-
rive a quantitative judgement such as a confidence interval. For
recurrence-based complexity measures those intervals can be esti-
mated using a resampling paradigm.

3.1. Resampling statistics – the bootstrap

Statistical techniques based on resampling were among the
first methods ever thought of. Sir R.A. Fisher himself introduced
this idea when pondering over Gosset’s t-distribution [3,4]. Due
to lacking computational power, these ideas were not feasible at
that time. With the advent of powerful, low-cost computers these
methods have gained a broad interest and have been proven to
be very reliable and powerful. In this Letter we focus on one par-
ticular resampling method – the bootstrap [2]. The bootstrap is
a nonparametric method for estimating the variance of a statis-
tic of interest. It relies on resampling of a given distribution with
replacement and does not require any specific probability distribu-
tion. The bootstrap procedure works as follows:

Given a random sample xi (i = 1,2, . . . ,n) of size n, from an
unspecified probability distribution we compute a statistic of in-
terest, say, the mean 〈x〉. In order to estimate the variance of that

statistic we draw at random and with replacement the same num-
ber (n) of elements from xi to obtain the resampled distribution
x∗
i . From x∗

i we again compute the statistic of interest. With re-
placement means that we can draw the individual elements in xi
more than once. Doing this a larger number of times1 we obtain
the empirical distribution of the statistic of interest, P̂ 〈x〉 . From the
empirical distribution we can compute the percentiles α/2 and
1 − α/2 and define the (100 − α)% confidence interval (CI) as the
range between those two percentiles.

The empirical distribution could also be used to perform hy-
pothesis testing. We opt for the estimation of confidence intervals
only. The interpretation of hypothesis tests, especially p-values, the
chosen indicator of significance, is currently under discussion and
not agreed upon by the frequentist and Bayesian schools. Therefore
we follow the suggestions of Hubbard and Lindsay [6] and only es-
timate the confidence intervals of the RQA measures. This allows
us to not only detect transitions in the dynamics of one system or
to differences between the dynamics of two systems but to provide
a judgement whether those differences are statistically significant.
While this is not statistical testing in the narrowest sense, we think
this approach is more appropriate as the data is explicitly shown
and the investigator may judge for him-/herself.

3.2. Structure preserving resampling

Since the bootstrap relies on resampling with replacement we
cannot simply bootstrap the RP matrix as such for two reasons.
First of all, we could draw one of the black points more than
once. As the RP is a binary matrix by definition this is not possi-
ble. Secondly, randomly resampling an RP would necessarily result
in a loss of most of the small-scale structures in it (i.e. diago-
nal and vertical lines). A loss of structures would result in an RP
corresponding to noise. This is not desirable because we want to
compare different systems against each other and not test against
randomness/noise.

As stated above, RQA measures like DET or LAM rely on the
distribution of line structures P (l) and P (v). Therefore we present
a method that ensures that the structural elements are preserved
during resampling. We only resample the distributions of diagonal
and vertical lines, P (l) and P (v). It is important to note that we
need to resample all lines in P (l) and P (v), even those of only
length 1, thereby obtaining P∗(l) and P∗(l), respectively. The value
of determinism is then computed according to:

DET∗i =
∑lmax

l!lmin
lP∗i(l)

∑lmax
l=1 lP∗i(l)

(i = 1,2, . . . ,nbs) (5)

for each bootstrapped sample (see Fig. 2). The computation for a
bootstrapped sample of 〈L〉∗ , LAM∗ and TT∗ is done accordingly.
Repeating this procedure nbs times we obtain the empirical distri-
butions P̂DET , P̂ 〈L〉 , P̂ LAM and P̂TT . From the empirical distributions
we can calculate the percentiles α/2 and 1 − α/2. The two-sided
(100 − α)% confidence interval is then defined as the range be-
tween those two percentiles. The value α determines the spread
of the interval, the smaller α, the broader the interval. As we leave
the structures in the RP intact, we refer to this procedure as struc-
ture preserving resampling.

For obvious reasons this approach is restricted to DET , 〈L〉, LAM
and TT . Vmax and Lmax already represent maxima in the distri-
bution and are therefore very unlikely to show variation and the
upper bound cannot vary at all. Furthermore, we can apply this

1 The number of resamplings is not generally agreed upon but common guide-
lines suggest values between 800 and 1500. Note also that the number of re-
sampling decreases with the randomness of the samples drawn. In the present
manuscript we use the MT19937 algorithm, which has a period of 219937 − 1 [12].
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procedure either to the whole RP or to moving windows in order
to obtain CIs over time. For this purpose the resampling and CI
estimation is applied to each window separately.

Fig. 2. The bootstrap procedure exemplified. It is important to note that only the
line structures are resampled. In this procedure we estimate the variance of the
RQA measures in question but do not construct surrogate data.

We can then plot the CIs as coloured bands ranging from the
lower to the upper bound of the estimated CI. In Fig. 3 the CI of
the complexity measures calculated from the logistic map in the
chaotic regime is given as a red band, the CI of the logistic map
with mutual transitions as a blue band.

4. Prototypical example

As a prototypical example we compare the logistic map in the
chaotic regime (Fig. 3, upper panel):

xi+1 = axi(1− xi) (6)

with a = 3.92 to the logistic map with mutual transitions (Fig. 3,
middle panel) given as:

xi+1 = aixi(1− xi). (7)

In difference to the standard logistic map, in the latter the control
parameter a is changed with every iteration of the map (ai+1 =
ai + (a).

For control parameter a in the range of [3.8;3.88] ((a =
0.00001) we find an island of stability starting at a = 1 +

√
8 )

3.828 with a period-3 window. For larger values of a the system
evolves into chaos by period-doubling. For a ! 3.856 the system
is again in a chaotic regime with a very short periodic window
for a = [3.858;3.859]. On the other hand, the standard logistic
map is in the chaotic regime for the chosen control parameter
(a = 3.92). In the chaotic regime the RP is mostly composed of
short lines and single dots, thus the value of 〈L〉 should be low and
the estimated confidence interval rather narrow as both systems
are unpredictable. On the other hand, when the logistic map with
transitions is in a periodic regime, the corresponding RP contains
continuous, long diagonal lines close to the main diagonal and
shorter, but still continuous lines, towards the edges of the plot.

Fig. 3. Comparison of the standard logistic map and the logistic map with mutual transitions. The latter is in a periodic regime for a = [3.828;3.856] reflected in a significant
increase in 〈L〉. The light blue band corresponds to the logistic map with transitions, the light red band to the logistic map in the chaotic regime. Parameters: m = 2,
τ = 1, w = 100, s = 100, fixed RR 10%. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
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Fig. 4. Grand Average ERP for the visual oddball task. Spatial average at P7, PZ and P8 with 1800 measurements in the non-target (solid line) and target condition (dash-dotted
line). The P300 in the target condition is clearly visible.

Therefore the value for 〈L〉 should increase and the correspond-
ing confidence interval should become broader because resampling
lines closer to the edges of the plot or closer to the main diagonal
is equally likely. Hence we should be able to distinguish both sys-
tems when one is in a periodic regime, i.e. the confidence intervals
should not overlap. For the RQA we use an embedding dimension
of m = 2 and a delay of τ = 1, for the bootstrap procedure we
chose 1000 resamplings.

If the complexity measures, respectively their confidence
bounds, perform as expected, we should be able to distinguish
the logistic map with mutual transition from its counterpart at
least in the periodic range as such states are not present in the
standard logistic map with the chosen control parameter. This is
indeed the case. Starting when both systems are chaotic, the con-
fidence bounds for the RQA measure 〈L〉 of the chaotic and the
test system overlap. For the island of stability 〈L〉 (Fig. 3, lower
panel in light blue) is significantly higher and the confidence inter-
vals do not overlap, whereas in the chaotic regime the confidence
intervals do overlap. Even the very small periodic window for
a = [3.858;3.859] occurring as the system evolves into chaos is
detected. The confidence bounds then start to overlap again as
both systems are chaotic.

5. Application

We apply the suggested procedure to measurements of elec-
tric brain signal (electroencephalogram, EEG) in a study on event-
related potentials (ERPs).

5.1. Material and methods

The paradigm used was a visual oddball featuring a prominent
P300, a centro-parietal positivity peaking at about 300 ms after
the presentation of a task relevant stimulus [18].

The stimuli were red and green disks presented in randomised,
equiprobable order. Stimulation duration was 100 ms, the inter-
val between successive stimuli 900 ms. The task was to count the
items of one colour (green or red) thereby constituting the non-
target (A) and the target condition (B) (items to be counted).

The EEG was recorded from 40 Ag/AgCl electrodes (impedances
" 5 k)) at a sampling rate of 250 Hz using a BrainAmp DC ampli-
fier (Brain Products GmbH, Munich, Germany). All electrodes were
initially referenced to an electrode on the left mastoid bone (A1)
and converted to average reference off-line. Details of data acquisi-
tion and pre-processing can be found in [20]. The EEG data shown
here was spatially averaged over 3 centro-parietal electrodes (P7,
PZ and P8) and lowpass-filtered at 20 Hz.

For the RQA we use order patterns recurrence plots (OPRP) as
introduced by [5]. In this variant of RPs the data series is sym-
bolised according to local rank relations and recurrence is defined
in this symbol space (see [5] for details). OPRPs have been shown
to be a suitable tool for ERP analysis [10,15] and further omit the
need for selecting a threshold ε, which cannot be estimated easily
[16]. The embedding parameters were estimated using the com-
monly accepted methods of false nearest neighbours and mutual
information: m = 3, τ = 7 [7]. We use a moving window of size
w = 60 shifted by s = 1 datapoints (frames). The time axis was
rescaled to adjust for pattern length and w/2 to align time to the
middle of a moving window. For the bootstrap procedure we used
1200 resamplings.

5.2. Results

The P300 is clearly visible in the Grand Average ERP (Fig. 4)
which is comprised of a total of 1800 trials. The challenge now
is to detect the component in the individual measurements. Note
that these measurements are extremely noisy, nonstationary and
rather short (276 sample points in total).

For our analysis we focus on the RQA measure LAM for which
we computed the 95% confidence interval. LAM is sensitive to
slowly changing dynamics in a system and has been proven to be
sensitive to ERP components [8,17]. From the single trial measure-
ments it is not feasible to assume a P300 (Fig. 5, upper panels). Yet,
the RQA does detect the component even in a single measurement,
reflected by a higher level of LAM in the target condition (B) (Fig. 5,
lower panels, red areas). Note that the method is only sensitive to
the ERP effect as the CIs always overlap except for the relevant
time window. Secondly, the P300 varies in its time course. This
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Fig. 5. Comparison of three single trials (a)–(c) in the visual oddball task. Spatial average at P7, PZ and P8. From the voltage measurements it is hard to assume a P300. The
RQA does detect the component and is only sensitive to the effect in question, confidence bounds do not overlap only in the relevant time window. RQA parameters: m = 3,
τ = 7, w = 60 and s = 1, order patterns RP. Time axis rescaled to compensate for pattern length and window size.

phenomenon is well known and referred to as latency jitter. In the
data at hand the P300 varies in onset (about 380 ms to 450 ms),
and its duration (50 to 250 ms). These are again well-known facts
but are not accessible with methods that rely on averaging only.

6. Discussion

The extension to the existing RQA framework presented here is
straightforward and easily applicable. The RQA is known to be a
useful tool for analysing noisy and nonstationary data, as is the
case with EEG recordings. By providing confidence bounds to a
number of recurrence-based complexity measures, we cannot only
detect properties of the investigated data, but we can also extend
the analysis to statistical comparisons, which is often called for in
empirical and experimental research. As shown here, the presented
method even enables us to perform single trial ERP analysis.

The main advantage of our approach is obvious. Not only are we
able to discriminate the two conditions qualitatively, which would

be possible with the RQA as such, but we are also able to give
a quantitative judgement. As shown here, we can distinguish two
experimental conditions with 95% confidence even on the scale of
single measurements.
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